Skip to main content

How to add scores to retriever results

Retrievers will return sequences of Document objects, which by default include no information about the process that retrieved them (e.g., a similarity score against a query). Here we demonstrate how to add retrieval scores to the .metadata of documents:

  1. From vectorstore retrievers;
  2. From higher-order LangChain retrievers, such as SelfQueryRetriever or MultiVectorRetriever.

For (1), we will implement a short wrapper function around the corresponding vector store. For (2), we will update a method of the corresponding class.

Create vector store​

First we populate a vector store with some data. We will use a PineconeVectorStore, but this guide is compatible with any LangChain vector store that implements a .similarity_search_with_score method.

from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from langchain_pinecone import PineconeVectorStore

docs = [
Document(
page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"},
),
Document(
page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...",
metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2},
),
Document(
page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea",
metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6},
),
Document(
page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them",
metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3},
),
Document(
page_content="Toys come alive and have a blast doing so",
metadata={"year": 1995, "genre": "animated"},
),
Document(
page_content="Three men walk into the Zone, three men walk out of the Zone",
metadata={
"year": 1979,
"director": "Andrei Tarkovsky",
"genre": "thriller",
"rating": 9.9,
},
),
]

vectorstore = PineconeVectorStore.from_documents(
docs, index_name="sample", embedding=OpenAIEmbeddings()
)

Retriever​

To obtain scores from a vector store retriever, we wrap the underlying vector store's .similarity_search_with_score method in a short function that packages scores into the associated document's metadata.

We add a @chain decorator to the function to create a Runnable that can be used similarly to a typical retriever.

from typing import List

from langchain_core.documents import Document
from langchain_core.runnables import chain


@chain
def retriever(query: str) -> List[Document]:
docs, scores = zip(*vectorstore.similarity_search_with_score(query))
for doc, score in zip(docs, scores):
doc.metadata["score"] = score

return docs

API Reference:

result = retriever.invoke("dinosaur")
result
(Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'genre': 'science fiction', 'rating': 7.7, 'year': 1993.0, 'score': 0.84429127}),
Document(page_content='Toys come alive and have a blast doing so', metadata={'genre': 'animated', 'year': 1995.0, 'score': 0.792038262}),
Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'director': 'Andrei Tarkovsky', 'genre': 'thriller', 'rating': 9.9, 'year': 1979.0, 'score': 0.751571238}),
Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'director': 'Satoshi Kon', 'rating': 8.6, 'year': 2006.0, 'score': 0.747471571}))

Note that similarity scores from the retrieval step are included in the metadata of the above documents.

SelfQueryRetriever​

SelfQueryRetriever will use a LLM to generate a query that is potentially structured-- for example, it can construct filters for the retrieval on top of the usual semantic-similarity driven selection. See this guide for more detail.

SelfQueryRetriever includes a short (1 - 2 line) method _get_docs_with_query that executes the vectorstore search. We can subclass SelfQueryRetriever and override this method to propagate similarity scores.

First, following the how-to guide, we will need to establish some metadata on which to filter:

from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import ChatOpenAI

metadata_field_info = [
AttributeInfo(
name="genre",
description="The genre of the movie. One of ['science fiction', 'comedy', 'drama', 'thriller', 'romance', 'action', 'animated']",
type="string",
),
AttributeInfo(
name="year",
description="The year the movie was released",
type="integer",
),
AttributeInfo(
name="director",
description="The name of the movie director",
type="string",
),
AttributeInfo(
name="rating", description="A 1-10 rating for the movie", type="float"
),
]
document_content_description = "Brief summary of a movie"
llm = ChatOpenAI(temperature=0)

We then override the _get_docs_with_query to use the similarity_search_with_score method of the underlying vector store:

from typing import Any, Dict


class CustomSelfQueryRetriever(SelfQueryRetriever):
def _get_docs_with_query(
self, query: str, search_kwargs: Dict[str, Any]
) -> List[Document]:
"""Get docs, adding score information."""
docs, scores = zip(
*vectorstore.similarity_search_with_score(query, **search_kwargs)
)
for doc, score in zip(docs, scores):
doc.metadata["score"] = score

return docs

Invoking this retriever will now include similarity scores in the document metadata. Note that the underlying structured-query capabilities of SelfQueryRetriever are retained.

retriever = CustomSelfQueryRetriever.from_llm(
llm,
vectorstore,
document_content_description,
metadata_field_info,
)


result = retriever.invoke("dinosaur movie with rating less than 8")
result
(Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'genre': 'science fiction', 'rating': 7.7, 'year': 1993.0, 'score': 0.84429127}),)

MultiVectorRetriever​

MultiVectorRetriever allows you to associate multiple vectors with a single document. This can be useful in a number of applications. For example, we can index small chunks of a larger document and run the retrieval on the chunks, but return the larger "parent" document when invoking the retriever. ParentDocumentRetriever, a subclass of MultiVectorRetriever, includes convenience methods for populating a vector store to support this. Further applications are detailed in this how-to guide.

To propagate similarity scores through this retriever, we can again subclass MultiVectorRetriever and override a method. This time we will override _get_relevant_documents.

First, we prepare some fake data. We generate fake "whole documents" and store them in a document store; here we will use a simple InMemoryStore.

from langchain.storage import InMemoryStore
from langchain_text_splitters import RecursiveCharacterTextSplitter

# The storage layer for the parent documents
docstore = InMemoryStore()
fake_whole_documents = [
("fake_id_1", Document(page_content="fake whole document 1")),
("fake_id_2", Document(page_content="fake whole document 2")),
]
docstore.mset(fake_whole_documents)

Next we will add some fake "sub-documents" to our vector store. We can link these sub-documents to the parent documents by populating the "doc_id" key in its metadata.

docs = [
Document(
page_content="A snippet from a larger document discussing cats.",
metadata={"doc_id": "fake_id_1"},
),
Document(
page_content="A snippet from a larger document discussing discourse.",
metadata={"doc_id": "fake_id_1"},
),
Document(
page_content="A snippet from a larger document discussing chocolate.",
metadata={"doc_id": "fake_id_2"},
),
]

vectorstore.add_documents(docs)
['62a85353-41ff-4346-bff7-be6c8ec2ed89',
'5d4a0e83-4cc5-40f1-bc73-ed9cbad0ee15',
'8c1d9a56-120f-45e4-ba70-a19cd19a38f4']

To propagate the scores, we subclass MultiVectorRetriever and override its _get_relevant_documents method. Here we will make two changes:

  1. We will add similarity scores to the metadata of the corresponding "sub-documents" using the similarity_search_with_score method of the underlying vector store as above;
  2. We will include a list of these sub-documents in the metadata of the retrieved parent document. This surfaces what snippets of text were identified by the retrieval, together with their corresponding similarity scores.
from collections import defaultdict

from langchain.retrievers import MultiVectorRetriever
from langchain_core.callbacks import CallbackManagerForRetrieverRun


class CustomMultiVectorRetriever(MultiVectorRetriever):
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
"""Get documents relevant to a query.
Args:
query: String to find relevant documents for
run_manager: The callbacks handler to use
Returns:
List of relevant documents
"""
results = self.vectorstore.similarity_search_with_score(
query, **self.search_kwargs
)

# Map doc_ids to list of sub-documents, adding scores to metadata
id_to_doc = defaultdict(list)
for doc, score in results:
doc_id = doc.metadata.get("doc_id")
if doc_id:
doc.metadata["score"] = score
id_to_doc[doc_id].append(doc)

# Fetch documents corresponding to doc_ids, retaining sub_docs in metadata
docs = []
for _id, sub_docs in id_to_doc.items():
docstore_docs = self.docstore.mget([_id])
if docstore_docs:
if doc := docstore_docs[0]:
doc.metadata["sub_docs"] = sub_docs
docs.append(doc)

return docs

Invoking this retriever, we can see that it identifies the correct parent document, including the relevant snippet from the sub-document with similarity score.

retriever = CustomMultiVectorRetriever(vectorstore=vectorstore, docstore=docstore)

retriever.invoke("cat")
[Document(page_content='fake whole document 1', metadata={'sub_docs': [Document(page_content='A snippet from a larger document discussing cats.', metadata={'doc_id': 'fake_id_1', 'score': 0.831276655})]})]

Was this page helpful?


You can leave detailed feedback on GitHub.